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The process of creep in pure metals is modeled as the cooperative interaction of three phenomena: the
thermally activated, force-dependent release of dislocation segments from obstacles; the substructrual
refinement of the microstructure due to plastic deformation; and the diffusion-controlled coarsening
of the substructure. Key parameters are given as approximate generic values which can be varied. It
is shown that for a wide range of parameters, the model reproduces the key features of the creep of
pure metals: a steady-state stress exponent near 5 is recovered, and the key microstructural-length
scale is related by a power law close to the reciprocal of stress (this dependence is not a strong
function of temperature at a given stress). In addition, the activation energy of steady-state creep is
nearly that of self-diffusion. Thus, the model reproduces the well-known phenomenology of pure-
metal steady-state creep. However, the present model is based on separate microstructural phenomena,
which can be independently refined and studied.

I. INTRODUCTION mechanisms, nor does it contain component parts that can
be clearly removed, examined, and modified to possiblyIT is remarkable that despite distinct differences in represent changes in varied materials, mechanisms, or

detailed mechanisms, all pure metals follow similar patterns conditions.
of strength, rate sensitivity, and strain hardening as a function Presently, we propose a simple model of the creep behav-
of temperature, strain, and strain rate. This has been clear ior of pure metals. The model is numerical in nature because
since the seminal review of Sherby and Burke,[1] and many it is difficult to concurrently consider the required equations
articles since this time have shown that by normalizing the in closed form. This model reproduces the major features
strain rate by diffusivity, data taken over a wide range of of the power-law creep of pure metals and the observed
temperatures and strain rates can collapse into a single scaling behavior, using reasonable and measurable parame-
line.[2–5]

ters and mechanistic relations as inputs. Further, we show
The works of Sherby, Weertman, Dorn, and others[6–9]

that the model, being consistent with creep phenomenology,
have been very compelling and collectively have taught us does not sensitively depend on the “correct” selection of
to see creep as being described as an equation of the form parameters. Instead, reasonable behavior is obtained over a

wide range of parameters.
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II. BACKGROUND—THE PHENOMENOLOGY
where ġss is the steady-state strain rate, t is the applied OF PURE-METAL CREEP
stress, m is the elastic shear modulus, n is the stress exponent,

The key features of the creep of pure metals are summa-Q is the activation energy for creep, T is the temperature,
rized in the classic Sherby and Burke[1] review, and veryR is the gas constant, and A can be regarded as a fitting
recently, a comprehensive review was published by Kassnerconstant. By varying A, mildly varying n from its “typical”
and Perez-Prado.[2] Typically, upon loading, the strain ratevalue of about 5, and mildly varying Q from its typical value
is quite large, and this causes an increase in dislocationof that for self-diffusivity, most data sets for pure metals in
density. Eventually, at a given strain, a steady-state creepcreep (and many for alloys and more complex materials)
region is usually obtained. Here, the strain rate does notcan be fit and rationalized. Often, if a good fit is not obtained,
vary with strain, and it is generally thought that the rates ofmany groups have invoked modifications to this form, such
dislocation accumulation and annihilation balance eachas subtracting a threshold stress from the driving stress,
other. Over the history of metal creep, experimental andwhich may itself be a function of temperature.
theoretical approaches have emphasized “steady-state”A key problem is that at its essence, Eq. [1] is a phenome-
creep, and a clear view of the phenomenology in this regionnological fit to a large amount of data. It represents an
has emerged. The essential features of steady-state creep atapproach that Oleg Sherby honestly refers to as “enlightened
nominal temperatures between 0.5 and 1.0 of the absoluteempericism.”[11] It does not, however represent any distinct
melting temperature are outlined in the following text.
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1025 and 1023, most pure metals will exhibit a stress expo- controlled. One particularly compelling piece of evidence
in this regard is that if one takes creep data acquired over

nent of n 1n 5  ln ġss / ln 1t
m22 near 5 (usually, between a range of stresses and temperatures and plots the data as

log (ġss/D) vs log (t /m ) for most nearly pure metals, the4 and 6). At lower stresses, experiments are difficult to
data will collapse to a single trend line with a power-lawperform because strain rates are very low. But at low stresses
exponent near 5. Here, D represents the diffusivity for theand high temperatures, the stress exponent often approaches
appropriate process and, as diffusivity is temperature depen-unity. This region is called Harper–Dorn creep, after its
dent, D 5 D0 exp (2Q/kT ). The temperature dependencediscoverers,[12] and has been reviewed, for example, by
of the steady-state creep process seems to be explained byArdell[13] and Mohammed and Ginter.[14] At stresses at or
the temperature dependence of self-diffusivity. This scalingabove about 1023 m, the 5 power-law also often breaks
behavior has been demonstrated for many metallic sys-down. Here, the strain rate increases exponentially with
tems.[1,4,6,10,23] One of the most remarkable demonstrationsapplied stress. A hyperbolic sine function raised to a power-
of this is provided by Luthy et al. in Figure 7 of theirlaw near 5 has long been known to describe the fit over a
article.[4] In this case, the concept of an effective diffusivitywide range of stresses, including the 5 power-law region
is introduced and used. Here, diffusion through both theand power-law breakdown.[3,4,15]

lattice and dislocation cores is considered. As a result ofAt relatively low temperatures, the stress exponent can
this, at low temperatures and high stresses, diffusion pipeoften increase to a value near 7. This has been interpreted
paths are favored. The uncorrected stress exponent in theseas a transition between creep controlled by lattice diffusion
cases is about 7, because the volume fraction of pipe pathsto dislocation pipe diffusion control[4] and will be discussed
is proportional to the square of stress.further in Section II–C.

D. Anomalous Systems and Unanswered QuestionsB. Substructure Dependence

The basic phenomenology described previously is wellDuring deformation dislocations are generated, and at
supported in simple, nearly pure metals. However, there areelevated temperatures these tend to cluster. At low tempera-
many systems where the steady-state stress exponents aretures, dislocations form thick, relatively disordered cell
much greater than 5 and typically, in these systems, thewalls, whereas at higher temperatures (and higher strains),
activation energy for creep is much greater than that forsubgrains tend to be favored over cell walls. Thus, several
self-diffusion. The systems that fall into this category typi-distinct (but related) parameters can be used to characterize
cally have significant volume fractions of a second phase,the microstructure, including the dislocation density and the
as in the case of composites and creep-resistant engineeringcell or subgrain size. There have been numerous studies
materials, which may have dispersion strengthening or alooking at these parameters in steady-state creep as a func-
finely dispersed phase which can stabilize the substructure.tion of stress and temperature. The general conclusion of
The present model will include substructural refinement andthese studies is that the steady-state dislocation density gen-
coarsening processes which are typical for pure metals. Theerally varies approximately with the square of applied stress.
behavior of these creep-resistant materials is likely quiteAlso, steady-state cell or subgrain sizes vary approximately
different than that for pure metals.inversely with applied stress. Typically, (b/l ) 5 k(t /m ),

One last issue that is not well studied is related to thewhere k is a factor close to 1.[5,10,16,17] This factor, k, varies
general phenomenology of creep in transient regions and,little, if at all, with temperature. A unified way to see this
in particular, the value of the creep activation energy inis that the characteristic microstructural dimension (either
primary creep. The Sherby–Burke review[1] makes the casetaken as l or 1/!r) varies approximately inversely with the
that the activation energy remains constant over the entireapplied stress, but is relatively insensitive to temperature.
creep curve (with relatively sparse supporting data), andOne other result of this substructure dependence is a dis-
this assumption is the basis of the Orr et al. life-predictiontinct difference between steady-state and constant-structure
methodology.[7] In some circles, it seems that it has becomecreep. Specifically, if a creep test is interrupted and the stress
conventional wisdom that the creep activation energy isis increased, the immediate stress exponent will be much
constant with strain. However, there are very little data pres-greater than 5 (i.e., the material would be weaker than expec-
ently available to test this hypothesis. Indeed, there is evi-ted at the same stress in steady state). This is because the
dence that in some cases the creep activation energy seemssubstructure generated by the lower stress applied before
to increase systematically through the primary region.[24]

the stress increase represents a coarser, weaker substructure
The model that will be presented below is largely consis-than the substructure established by applying the higher

tent with this creep phenomenology.stress over a long period of time. Sherby et al. have suggested
that the constant-structure stress exponent should be about
8. However, another school of thought developed by

III. MODELING APPROACHBiberger and Gibeling[18] suggests that constant-structure
creep should be described as an exponential relationship The goal here is to couple accepted ideas on dislocation-
between the stress and strain rate. obstacle bypass, structural refinement, and substructural

coarsening into a coherent model of creep that describes the
generic behavior of pure metals. The relations we will pres-C. Temperature Dependence
ent are general and have free constants which can be tuned
for specific situations. However, we will show that the basicThe works of Sherby, Weertman, and others[1,4,6,19–22] have

strongly made the case that steady-state creep is diffusion results of the model are robust over a wide range of input
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parameters. Hence, the equations to follow are almost better with deformation. However, it is clear that the obstacle den-
sity must change with deformation. Plastic deformation oper-regarded as coupled scaling relations than as strict descrip-

tions of any particular material. The detailed mechanisms ates dislocation sources, and these dislocations become
pinned in the structure, causing strain hardening via struc-(which vary from material to material) are, of course,

important in defining the behavior of that material and can tural refinement. Typically, this is modeled as an increase
in the stored dislocation density using an equation of the formbe reflected in the specific equations and constants used in

a model of this form.
r 5 r0 1 MDg [6]We will consider one evolving microstructural parameter,

the interobstacle spacing (l ), as describing the microstruc-
where M is the dislocation breeding constant.ture at any given point in time. We assume that this could

In the spirit of keeping the present model as simple asequivalently be taken as r21/2.
can be physically justified, we will use a single structuralWe assume initially that plastic flow can be described by
variable (which can be expressed as l or r ) to represent thethe classical equations for thermally activated bypass of
material “hardness” or to represent the relevant microstruc-dislocations over obstacles, where the energy barrier (DG*)
tural scale in the material. Usually it is found that duringfor overcoming an obstacle with a stress-free size (DF*) and
primary creep, dislocations are rather homogeneously dis-athermal bypass force (k̂ ) is given by
tributed, but they tend to cluster as the process goes on,
forming cells and subgrains. In any case, the total dislocation

DG* 5 DF* 11 2 1f
k̂ 2

p

2
q

[2] density, the free dislocation density, and subgrain size all
scale in a natural way with the applied stress. Nix and
Ilschner[23] have clearly discussed these issues through thewhere f is the force the dislocation exerts upon the obstacle
Taylor relation and the empirically determined relationshipand k̂ is the force at which the dislocation would break free
between applied stress and subgrain size. Based on dimen-from the obstacle athermally. Equation [2] is a well-accepted
sional arguments, the natural dislocation density and sub-description of the energy barrier a dislocation line must
grain sizes can be related approximately asovercome to pass an obstacle.[25] We presently assume that

all obstacles are identical and have characteristic values of
l 5

g

!r
[7]DF* and k̂. Similarly, we assume that the force on all obsta-

cles is the same and can be taken as
where, using Nix and Ilschner’s arguments and the data off 5 tbl [3]
Staker and Holt,[27] for copper, the value of g should be
taken as about 5. Generally, g can be seen as a measure ofwhere t is the applied shear stress, l is the interobstacle
how readily free dislocations cluster into subgrains. A lowerspacing, and b is the magnitude of the Burger’s vector. In
limit on g is!3, which represents the case where dislocationslater work we will integrate this with an approach for dealing
are evenly spaced, running orthogonally in three directionswith obstacles of varied size and/or spacing, similar to a
and meeting in a simple cubic lattice. If one increases thework published earlier.[26]

density of dislocations along one or more of the planesDislocations overcome obstacles according to the usual
described in this lattice, the value of g will increase. ThisArrhenius rate law. That is, in a single atomic vibration
concept is supported by Figure 1. Thus, l still representsperiod (1/n ), the probability of overcoming the obstacle is
the fundamental interobstacle spacing in the microstructure.given by
While it seems that the nature of the dislocation pins must
change with strain, the experimental evidence is that during

Pslip 5 exp 12DG*
kT 2 [4] steady-state creep, the average subgrain misorientation can

change substantially with increasing plastic deformation;
however, the creep strength changes little. It may be thatwhere k is the Boltzmann’s constant and T is the absolute
while increasing the density of dislocations in the cell wallstemperature.
provides stronger traps for the dislocations, there is a nearlyWhen the barrier is overcome, a strain increment is pro-
balancing effect, where the most weakly bound dislocationduced. We assume that obstacles make up something approx-
has about the same properties in this larger population. Toimating a cubic array of obstacles with a characteristic
re-emphasize, a particular model for the pin geometry is notspacing, l. When a volume of l on a side is sheared by a
formulated, but we believe the spacing should scale withdisplacement of one Burger’s vector, a shear strain on the
and be similar to l and/or 1/!r.order of b/l is produced. Thus, at any given point in time,

At elevated temperatures, the dislocation networks thatthe material’s strain rate can be written as
form subgrains will coarsen to reduce the total energy of
the structure (seen as line or surface tension). While most
models of creep have emphasized the dislocation-climb

ġ 5
b
l

n exp 12

DF* 11 2 1tbl
k̂ 2

p

2
q

kT
2 [5] process as enabling deformation, here, the coarsening proc-

ess is seen as the enabler of further flow. In a 1985 overview,
Atkinson[28] compared the theories of grain growth in pure-

where ġ represents the shear strain rate. Thus, with this metal, single-phase systems to experimental observations.
simple approach, at any point in time we can predict a It was found that over a time increment, the initial average
material’s strain rate as a function of temperature, stress, grain size (R0) will grow to Rt as follows:
and the character and spacing of the relevant obstacles.

R m
t 2 R m

0 5 Kt [8]We assume that the nature of the obstacles does not change
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general. It has been used to describe diverse systems such
as precipitates,[30] thin films,[31,32] and phase separation in
copolymer blends.[33] One theme that persists in this work
is that a range of coarsening exponents is available,
depending on detailed conditions.[34]

In our implementation of the model, we adapt Eq. [8] for
describing coarsening of the substructure parameter, l:

lmc
dt 2 lmc

0 5 KDdt [9]

where D represents self-diffusivity. This is, of course, tem-
perature dependent and may or may not include dislocation
pipe diffusion and boundary diffusion in addition to lat-
tice diffusion.

Parameters and Implementation of the Model

The goal of this model is not to carefully consider the creep
behavior of a particular material, but instead to consider the
generic aspects of pure-metal creep. Accordingly, we assume

(a) that a material is characterized by its shear modulus, and
the magnitude of the Burger’s vector. From here, we assume
melting-point scales with a modulus as Tm 5 mb3/(48 k),
where k is the Boltzmann’s constant.

For diffusion, we assume that the “generic” behavior of
metals as discussed in Shewmon[35] holds. Thus, for most
metals, their diffusivity can be roughly expressed at their
homologeous temperature (Th 5 T /Tm) as

D 5 2b2 n exp 1212
Th

2 [10]

With this form at the melting point, the diffusivity of metals
will be about 10212 m2s21, which is suggested as an empirical
rule of thumb.[35] Presently, we shall neglect the possible
effects of dislocation pipe diffusion or other internal short-
circuit paths. However, the model can be easily modified to
accept this refinement, and it does not change the basic
results we will present.

Again, we assume that mb3 5 48 kTm . With the normaliz-
ing used presently, the diffusion activation energy becomes

(b) 0.45 mb3. Further, we normalize by assuming DF* 5 s1 mb3

and k̂ 5 s2 mb2, where s1 and s2 can be considered toFig. 1—(a) The greatest possible dispersion of dislocations in space. Here,
they form a cubic array where dislocations are evenly spaced in the x, y, be either material properties or properties of the particular
and z directions, in which case g in Eq. [7] is equal to !3. In case (b), obstacle determining the energy required for a dislocation
dislocations are arranged in planar arrays along one set of planes. Here, g required to overcome an obstacle. If two dislocations simply
is equal to about !20.

intersect to form two-unit jogs, this requires an energy of
about 1/4 to 1/2 mb3 (0.25 # s1 # 0.5). However, it is much
more common for dislocations to interact strongly in sub-

where R is the average grain size, K is a fitting constant, boundaries. For example, it is common in bcc metals for two
and t represents time. The grain-growth or coarsening expo- a/2 ^111&–type dislocations to form an attractive junction,
nent (m) is particularly interesting. The classical value of m making a full ^100&-type dislocation. Junctions such as these
is 2, which comes from the seminal paper of Burke and may be quite energetically stable and could be responsible
Turnbull.[29] However, both experiments and models that for s1 values much greater than unity. The athermal strength
consider the interplay of the topological requirements for of the obstacle is represented by s2. If the dislocation line
space filling with growth kinetics show that a wider range tension is taken as mb2, then s2 can be taken as the cosine
of exponents is available. For example, models commonly of the athermal obstacle breaking angle. Thus, s2 is formally
show values of this exponent between 2 and 4. Experimental bounded between zero and unity (i.e., bypass takes place at
data show the same range with several metals, showing s2 5 1.0). However, one could justify s2 . 1 to possibly
exponents near 2.5 to 3, and aluminum has shown a value account for obstacle clustering.
as high as 4. We are presently assuming that grains and
subgrains behave similarly. But values for energy and mobil-

IV. RESULTSity are different. Subgrains may also have longer-range stress
fields associated with them. It is also important to note that The equations developed were used in two different

modes, with two different models to develop the evolutionthis form of coarsening equation has been shown to be quite
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Fig. 2—Behavior of the structural parameter l and the strain rate with
increasing time. The bottom left shows l as a function of time. The upper Fig. 3—Predicted steady-state strain rate as a function of applied stresses
right graphs show the development of the strain rate ġ. In all cases, t /m at (T /Tm) 5 0.5, 0.6, 0.7, 0.8, and 0.9. Constants used in Table I are
5 1.6 3 1025; T /Tm 5 0.5, 0.6, 0.7, 0.8, and 0.9; and the standard parameters used throughout.
in Table I are used. Note that the model shows a clear steady-state regime
after a transient.

initial part of the strain (up to about 2 3 1026) places
forces on obstacles that exceed the athermal strength of the

Table I. Parameters and Values Used in the Model Except obstacles, and deformation is very fast. After this initial
Where Stated Otherwise period, the dislocation density rises to the point where ther-

mal activation is required to overcome barriers, and theParameter Corresponds to Value Units Used as
strain rate slows systematically with increasing strain. If this

b Burgers vector 2.775 10210 m Eq. [3] model is run at a constant strain rate instead of fixed stress,v atomic vibration 1014 s21 Eq. [5]
we find that the model provides a strain-hardening exponentfrequency
of about 0.5, irrespective of strain rate or temperature. Even-s1 obstacle energy 1.5 — Eq. [5]
tually, a steady state is obtained where the recovery andparameter
hardening processes balance. This is shown by the clears2 athermal force 0.5 — Eq. [5]

parameter constant strain rate in Figure 2. Figure 2 also shows the
mc grain growth exponent 3 — Eq. [9] evolution of the characteristic spacing, l. Note that both l
M dislocation breeding 1017 m22 Eq. [6] and ġ reach values that do not change in steady state. Also,

constant steady-state values of l and ġ are weak functions of the
g dislocation subgrain 5 — Eq. [7] normalized temperature.

relation parameter
p obstacle aspect ratio 1 — Eq. [2]

constant B. Steady-State Behavior
q obstacle shape — Eq. [2]3

2 A separate routine models steady-state behavior. Startingparameter
with a target strain rate, Eqs. [6], [7], and [9] are used to
numerically solve for the value of l that is obtained in steady
state at a given temperature for a given set of materials
parameters. Once l is known, Eq. [5] can be used to numeri-of l and ġ, respectively, and to find steady-state values.

This is described sequentially in Sections III–B and C. cally solve for t at the given strain rate, with all the other
parameters known. This provides a very efficient method to
determine steady-state creep rates over a wide parameter

A. Approach to Steady State by Evolution of l and ġ space, and the results are fully consistent with those devel-
oped from the evolution approach described previously.Here, we start with an initial dislocation density of 2.5

1010 m22 (or, equivalently, a microstructural dimension (l ) Figure 3 shows the strain rate plotted as a function of
t /m for temperatures between 0.5 and 0.9 Tm . At the lowerof about 32 mm). A time-stepping procedure is used, and

small strain increments are added at discrete times using temperatures the trend line is quite linear, with a slope of
about 5 on the log-log axes. At higher temperatures, thereEq. [5]. Also, at each time increment, Eqs. [6] and [9] are

used to modify r and l. As an example, Figure 2 shows the is deviation from the 5 power law at both the higher and
lower strain rates. In Figure 4, the strain rate is now normal-results of a simulation carried out at an applied stress of

1.6 3 1025 m; homologeous temperatures of 0.5, 0.6, 0.7, ized by the diffusivity. This causes the data to largely collapse
to nearly a single scatter band. The data collapse most fully0.8, and 0.9 Tm; and the materials parameters shown in Table

I. Plotted on linear axes, the strain-time curve looks like a at a stress between 1025 and 1024. At higher and lower
stresses, the curves diverge with higher temperatures, show-fairly ordinary creep curve with fast plastic flow and deceler-

ating creep into steady state, except that at all temperatures ing deviations like those seen in Harper–Dorn creep and
power-law breakdown at low and high stresses, respectively.steady state is reached at a very low strain of about 0.1 pct.

Figure 2 shows the resulting strain rate on log-log axes. The This divergence becomes stronger as s1 is decreased.
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(a)

Fig. 4—Same data as in Fig. 9 except now steady-state strain rate is divided
by diffusivity at the test temperature. This causes the data to collapse to
nearly a single trend line.

(b)

Fig. 5—These are again results from the same simulations presented in
Figs. 9 and 10. Here, normalized force f /k̂ is presented as one axis. There
is a rising trend in this data set. The term l is presented on the other axis.
Note these data taken at varied temperatures collapse well. This shows

(c)(l /b) ' k ? 1m
t2.

Figure 5 shows how the normalized force ( f/k̂ ) and sub-
grain size in steady state vary with applied stress over the
range of temperatures simulated. Note that at stresses
between 1025 and 1024, where the normalized strain rates
converge best (even for lower s1 values), the normalized
force and subgrain sizes are nearly independent of tempera-
ture. Also, the breakdowns in the power-law behavior take
place as the normalized force approaches zero and 1, respec-
tively, at low and high applied stresses. Notice that in general,
the variation of normalized force with temperature is greater

(d)at higher temperatures, accounting for the reduced power-
Fig. 6—The effect of variation of the model parameters on the normalizedlaw regime.
strain rate as a function of stress is considered. All parameters except thoseThe effect of varying parameters on the normalized strain
varied chosen according to Table I, (T /Tm) 5 {0.5, 0.6, 0.7, 0.8, 0.9}. (a)rate as a function of applied stress is studied in Figure 6. Increasing obstacle strength through s1 and s2 increases materials’ strength,

In all cases, the parameter set used in Table I is used, with and increasing s1 improves the convergence of the normalized data. (b)
the exception of changing the selected values highlighted The effect of variation of the coarsening exponent, mc , on the normalized

strain rate as a function of stress is considered. (c) Shows that increasingin each graph. The effect of obstacle strength on creep behav-
the dislocation breeding constant, M, increases materials’ strength. (d ) Theior is examined in Figure 6(a). Increasing the obstacle size
effect of variation of the exponents p and q on the normalized strain rate as

increases the creep strength, and increasing the energy bar- a function of stress is considered. Changes in these exponents are relatively
rier improves the degree to which data taken at varied tem- unimportant. In all cases, the most highly curved lines correspond to the

highest temperature.peratures collapse to a single trend when normalized by
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diffusivity. Note that even when DF* is near the activation
energy for self-diffusion (0.45 vs 0.5 mb3), the data collapse
by a reasonable degree. Also, as s1 increases beyond 5, the
5 power law is maintained, but the trends no longer shift to
lower strain rates with increasing energy barrier size. The
variation of the coarsening exponent (mc) is considered in
Figure 6(b). Here, we vary the coarsening constant, K, in
Eq. [9] with mc in such a manner that in 1000 seconds, at
the melting temperature, very fine microstructural spacing
would coarsen to 100 mm. Generally, increasing the value
of the coarsening exponent increases the stress exponent (n),
causes the normalized creep data to collapse better to a trend,
and reduces the material creep strength (because structures
finer than 100 mm will coarsen faster at increased mc values).
However, the change in stress exponent with coarsening
exponent is fairly mild. For the conditions shown here, n
increases from about 4.1 to 5.7 when mc varies between 2.5 (a)
and 4. A recent closed-form analysis shows a limiting value
of n 5 mc 1 2 develops as s1 becomes large.[39] Changing
the values of the constants in these equations usually has
the effect of largely shifting the trend lines. For example,
Figure 6(c) shows the effect of varying the dislocation breed-
ing constant between 1016 and 1018 m22. The increased rate
of dislocation generation causes the structure to refine better,
increasing the material strength. The value of the stress
exponent and other characteristics are quite similar. Last,
Figure 6(d) shows that the values of p and q in Eq. [2] have
little effect on the simulations. In summary, Figure 6 shows
that the steady-state strain rate vs stress characteristics are
similar over a wide range of input values. The steady-state
stress exponent remains near 5 for stresses nominally
between 1025 and 1023 m. Also, the strain rate normalized
by diffusivity tends to collapse to one trend line for values
of s1 which are significantly greater than 0.45 (which repre-
sents the activation energy for plastic flow being greater (b)
than that for diffusivity).

Fig. 7—l /b as a function of applied stress. (a) Increasing obstacle strengthFigure 7 shows the predicted variation in l with applied increases l and also increases the degree of data convergence. (b) The
stresses for temperatures between 0.5 and 0.9 Tm , with a value of the coarsening exponent, mc , is relatively unimportant in setting

the slope of this curve. In all cases, conditions in Table I are used andvariety of parameter sets. Basically, the graphs show that
(T /Tm) 5 {0.5, 0.6, 0.7, 0.8, 0.9}.each simulated material (represented by a given parameter

set) behaves in accord with known creep phenomenology.
Data developed at varied temperatures collapse into a rela-

accord with absolute values of creep rates. The 1962 reviewtively narrow trend. Also, there is a nearly inverse relation-
by Sherby[37] shows that, for a number of metals, when creepship between l and the applied stress. In this particular case,
data are plotted as ġ/D vs s /E, the main trend line has athe relationship is closer to l 5 k (t /m )2p, where the value
slope near 5 and falls approximately through a stress of s /of the exponent p is approximately 0.9 for the standard
E 5 1024 at ġ/D 5 1010 m22 (plus or minus a couple ofparameters at stresses between 1025 and 1023 m. This expo-
orders of magnitude). This is in good accord with the presentnent value is within experimental error for many measured
predictions, as shown in Figure 6. Also, Figure 7 showsdata sets of subgrain size as a function of stress, reviewed
reasonable agreement with experimentally measured trends.by Takeuchi and Argon.[36]

Takeuchi and Argon have reviewed the steady-state subgrain
sizes in the creep of several materials and have concluded

IV. DISCUSSION AND OPEN QUESTIONS that an equation of the form l 5 k(t /m )2p is appropriate
where p should be in the range of 0.7 to 1, when t is aboutOverall, the trends shown in Figures 2 through 7 are in

very good agreement with well-known creep phenomenol- 1024 m, and steady-state subgrain sizes range between 105

and 106 b. For most metals, there is only a small temperatureogy. The creep activation energy is very close to that for
self-diffusion. The stress exponent robustly takes on values dependence on subgrain size. In our case, the microstructural

dimension, l, is smaller than the typical subgrain size pre-near 5 over a wide range of input parameters, stresses, and
temperatures. The characteristic microstructural scale varies dicted by these trend lines by one order of magnitude or

more. The parameter l, here, does not explicitly representnearly inversely with applied stress. These are results from
the model; these are not characteristics that were explicitly subgrain size, and this may simply be because the relevant

microstructural spacing is the pin spacing within the subgrainbuilt into the model. Even with the crude approximations
made presently, the model’s absolute values are in rough wall, which is, of course, smaller than the subgrain size. All
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of this is encouraging for a model which is only expected is nearly fixed at 0.5 and changes abruptly at steady state.
It seems such issues may be handled by introducing a distri-to have, at best, order-of-magnitude predictive capability.
bution of pin strengths with a load redistribution similar toThis model is posed in a rather general way to capture
an approach published earlier.[26] These approaches will bethe trends that seem common to all nearly pure single-phase
integrated with the present model and presented in themetals, and it is supposed that the differences between sys-
near future.tems can be explained by matching the exact equations and

parameters to microstructural mechanisms. One issue that
is troubling is that we do not have a coherent view of what

V. CONCLUDING REMARKSthe nature, spacing, and strength characteristics of the dis-
crete pins are. Often it is thought that, for pure metals, We have developed a model for creep that is composed
DF* should be less than 0.5 mb3 for typical forest-type from separate equations for dislocation bypass of obstacles,
interactions. However, if the fundamental activation energy structural refinement by plasticity, and structural-diffusion-
for dislocation release is equivalent to or less than that for controlled coarsening. The model recovers well-known
self-diffusion, it would be very difficult to explain why creep creep phenomenology. Significant effort can still be justified
activation energies are not significantly smaller than those to gain a better understanding of these constituent processes.
for self-diffusion, and it would also be difficult to explain
why materials are as strong as they are at elevated tempera-
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